x^2+3x+4,5=225

Simple and best practice solution for x^2+3x+4,5=225 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+3x+4,5=225 equation:



x^2+3x+4.5=225
We move all terms to the left:
x^2+3x+4.5-(225)=0
We add all the numbers together, and all the variables
x^2+3x-220.5=0
a = 1; b = 3; c = -220.5;
Δ = b2-4ac
Δ = 32-4·1·(-220.5)
Δ = 891
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{891}=\sqrt{81*11}=\sqrt{81}*\sqrt{11}=9\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9\sqrt{11}}{2*1}=\frac{-3-9\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9\sqrt{11}}{2*1}=\frac{-3+9\sqrt{11}}{2} $

See similar equations:

| -5^x-5^x=1 | | 3x-2(50-×)=85 | | x^2−24x+20=0 | | -5^x-5^x-1=0 | | x^2+6x−42=0 | | –12p=24 | | 2y+1=3y-4 | | 7y^2+27y=0 | | 4/7=q/91 | | 3/5=g/30 | | 4a+a–11=24 | | 2s+2s+5=13 | | 1^2(x-10)=7 | | 2x+3×-4=6 | | 7x+4=−31 | | 19a-17a+5=19 | | 8z−5z+6z=9 | | -4y+4+3y=-1 | | 9z-8z=18 | | 4x=112. | | 16m-14m=12 | | (2/6)/x=5/80 | | 0,75p=0.4p+100 | | 2(3y-7)=36 | | 3-x=5x | | .33/x=5/80 | | 3/4=u/68 | | 5.9a+12=59.2 | | -4x-2=-6^3 | | 8=2(k+-1 | | 3c-2c=13 | | 3x+10=5(x-50) |

Equations solver categories